We investigate jointly modeling Age-specific rates of various causes of death in a multinational setting. We apply Multi-Output Gaussian Processes (MOGP), a spatial machine learning method, to smooth and extrapolate multiple cause-of-death mortality rates across several countries and both genders. To maintain flexibility and scalability, we investigate MOGPs with Kronecker-structured kernels and latent factors. In particular, we develop a custom multi-level MOGP that leverages the gridded structure of mortality tables to efficiently capture heterogeneity and dependence across different factor inputs. Results are illustrated with datasets from the Human Cause-of-Death Database (HCD). We discuss a case study involving cancer variations in three European nations, and a US-based study that considers eight top-level causes and includes comparison to all-cause analysis. Our models provide insights into the commonality of cause-specific mortality trends and demonstrate the opportunities for respective data fusion.
翻译:为了保持灵活性和可伸缩性,我们用多国环境下不同死亡原因的不同年龄比例共同调查。我们采用多输出高斯过程(MOGP)这一空间机器学习方法来平稳和推断几个国家和两性的多重死因死亡率。为了保持灵活性和可伸缩性,我们用克罗涅克结构型内核和潜在因素来调查多层次混合死亡率。特别是,我们开发了一个定制的多层次混合模型,利用死亡率表格的网格结构来有效捕捉不同因素投入之间的异质性和依赖性。结果通过人类死亡原因数据库(HCD)的数据集加以说明。我们讨论了涉及三个欧洲国家癌症变异的案例研究,以及一项基于美国的研究,该研究考虑了八个顶级原因,包括与所有原因的分析进行比较。我们的模型提供了对特定原因死亡率趋势共性的洞察力,并展示了各自数据融合的机会。