One of the key issues in quantum information theory related problems concerns with that of distinguishability of quantum states. In this context, Bures distance serves as one of the foremost choices among various distance measures. It also relates to fidelity, which is another quantity of immense importance in quantum information theory. In this work, we derive exact results for the average fidelity and variance of the squared Bures distance between a fixed density matrix and a random density matrix, and also between two independent random density matrices. These results supplement the recently obtained results for the mean root fidelity and mean of squared Bures distance [Phys. Rev. A 104, 022438 (2021)]. The availability of both mean and variance also enables us to provide a gamma-distribution-based approximation for the probability density of the squared Bures distance. The analytical results are corroborated using Monte Carlo simulations. Furthermore, we compare our analytical results with the mean and variance of the squared Bures distance between reduced density matrices generated using coupled kicked tops, and a correlated spin chain system in a random magnetic field. In both cases, we find good agreement.
翻译:量子信息理论中的一个关键问题与量子状态的区别问题有关。 在这方面, 布尔斯距离是各种距离测量中最重要的选择之一。 它也与忠诚有关, 这是量子信息理论中又一个非常重要的数量。 在这项工作中, 我们为固定密度矩阵和随机密度矩阵之间以及两个独立的随机密度矩阵之间的平方布雷斯距离的平均忠诚度和差异得出了准确的结果。 这些结果补充了最近从平均根忠诚度和正方格布雷斯距离[Phys.Rev. A 104, 022438 (2021 )] 中得出的结果。 平均和差异的可用性也使我们能够为正方格布雷斯距离的概率密度提供基于伽马分布的近似率。 分析结果通过蒙特卡洛模拟得到证实。 此外, 我们比较了我们的分析结果, 将平方格布雷斯距离与使用加脚的顶部生成的低密度矩阵和随机磁场中关联的旋转链系统之间的平均值和差异作了比较。 在这两种情况下, 我们都找到了良好的一致意见。