Graph convolutional networks (GCNs) are a widely used method for graph representation learning. To elucidate the capabilities and limitations of GCNs, we investigate their power, as a function of their number of layers, to distinguish between different random graph models (corresponding to different class-conditional distributions in a classification problem) on the basis of the embeddings of their sample graphs. In particular, the graph models that we consider arise from graphons, which are the most general possible parameterizations of infinite exchangeable graph models and which are the central objects of study in the theory of dense graph limits. We give a precise characterization of the set of pairs of graphons that are indistinguishable by a GCN with nonlinear activation functions coming from a certain broad class if its depth is at least logarithmic in the size of the sample graph. This characterization is in terms of a degree profile closeness property. Outside this class, a very simple GCN architecture suffices for distinguishability. We then exhibit a concrete, infinite class of graphons arising from stochastic block models that are well-separated in terms of cut distance and are indistinguishable by a GCN. These results theoretically match empirical observations of several prior works. To prove our results, we exploit a connection to random walks on graphs. Finally, we give empirical results on synthetic and real graph classification datasets, indicating that indistinguishable graph distributions arise in practice.


翻译:图形图解网络( GCNs) 是一种广泛使用的图形代表学习方法。 为了阐明GCNs的能力和局限性, 我们根据它们层数的函数, 调查它们的力量, 以便根据样本图的嵌入情况, 区分不同的随机图形模型( 与分类问题中不同等级条件分布相对应 ) 。 特别是, 我们认为来自图形的图形模型。 这些图形模型是无限可互换的图形模型的最一般可能的参数, 也是密度图形限制理论中研究的中心对象。 我们精确地描述一组不可分辨的图形模型, 这些图形由具有非线性启动功能的GCN组织组成, 从一定宽的类别中区分出来, 如果其深度至少与样本图的大小有对数的对线性。 这种特征的图形模型模型是某种程度的近距离属性。 在这个类中, 一个非常简单的GCN结构结构可以辨别。 然后我们展示了一套具体、 无限的图表, 从高密度的图形模型中产生的图形。 将一个非线性图形组合功能精确地描述成一对某大类的图形的图形,, 将我们用前几行的数学排序的实验结果加以分析。

0
下载
关闭预览

相关内容

【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
148+阅读 · 2020年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
15+阅读 · 2019年4月4日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Deep Graph Infomax
Arxiv
16+阅读 · 2018年12月21日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
148+阅读 · 2020年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Top
微信扫码咨询专知VIP会员