To model and forecast flight delays accurately, it is crucial to harness various vehicle trajectory and contextual sensor data on airport tarmac areas. These heterogeneous sensor data, if modelled correctly, can be used to generate a situational awareness map. Existing techniques apply traditional supervised learning methods onto historical data, contextual features and route information among different airports to predict flight delay are inaccurate and only predict arrival delay but not departure delay, which is essential to airlines. In this paper, we propose a vision-based solution to achieve a high forecasting accuracy, applicable to the airport. Our solution leverages a snapshot of the airport situational awareness map, which contains various trajectories of aircraft and contextual features such as weather and airline schedules. We propose an end-to-end deep learning architecture, TrajCNN, which captures both the spatial and temporal information from the situational awareness map. Additionally, we reveal that the situational awareness map of the airport has a vital impact on estimating flight departure delay. Our proposed framework obtained a good result (around 18 minutes error) for predicting flight departure delay at Los Angeles International Airport.
翻译:为了准确模拟和预测飞行延误,必须利用机场停机坪地区的各种车辆轨迹和背景感应数据,如果模型正确,这些不同感应数据可以用来绘制了解情况地图; 现有技术对历史数据、背景特征和不同机场的路线信息采用传统的有监督的学习方法,以预测飞行延误是不准确的,只能预测抵达延迟,而不是飞行延误,这对航空公司至关重要; 在本文件中,我们提出了一个基于愿景的解决方案,以实现适用于机场的高预报准确性; 我们的解决方案利用了机场情况认识地图的快照,其中载有飞机的各种轨迹以及天气和航空公司时间表等背景特征; 我们提议了一个端至端至端深学习结构,即TrajCNN,它从情况认识地图上获取空间和时间信息; 此外,我们指出,机场的情况认识地图对估计飞行延迟情况具有重要影响; 我们提出的框架在预测洛杉矶国际机场飞行延迟方面取得了良好结果(大约18分钟误差)。