Typically, unsupervised segmentation of speech into the phone and word-like units are treated as separate tasks and are often done via different methods which do not fully leverage the inter-dependence of the two tasks. Here, we unify them and propose a technique that can jointly perform both, showing that these two tasks indeed benefit from each other. Recent attempts employ self-supervised learning, such as contrastive predictive coding (CPC), where the next frame is predicted given past context. However, CPC only looks at the audio signal's frame-level structure. We overcome this limitation with a segmental contrastive predictive coding (SCPC) framework to model the signal structure at a higher level, e.g., phone level. A convolutional neural network learns frame-level representation from the raw waveform via noise-contrastive estimation (NCE). A differentiable boundary detector finds variable-length segments, which are then used to optimize a segment encoder via NCE to learn segment representations. The differentiable boundary detector allows us to train frame-level and segment-level encoders jointly. Experiments show that our single model outperforms existing phone and word segmentation methods on TIMIT and Buckeye datasets. We discover that phone class impacts the boundary detection performance, and the boundaries between successive vowels or semivowels are the most difficult to identify. Finally, we use SCPC to extract speech features at the segment level rather than at uniformly spaced frame level (e.g., 10 ms) and produce variable rate representations that change according to the contents of the utterance. We can lower the feature extraction rate from the typical 100 Hz to as low as 14.5 Hz on average while still outperforming the MFCC features on the linear phone classification task.


翻译:通常情况下, 电话和类似字词单位的语音分解不受监督, 被当作单独的任务处理, 并且往往通过不同的方法来完成。 在这里, 我们统一它们, 并提议一种可以同时执行两种任务的技术, 表明这两个任务确实从彼此受益。 最近尝试使用自我监督的学习方法, 例如对比性预测编码( CPC), 根据过去的背景预测下一个框架 。 然而, CPC 只能查看音频信号的框架层次结构 。 我们克服了这一限制, 我们用一个部分对比性预测编码( SCPC) 框架来模拟更高层次的信号结构, 例如, 电话级别 。 一个革命性神经网络通过噪声调估计( NCE) 学习原始波形的框层次代表。 一个不同的边界探测器会发现可变长的段, 然后用来通过 NCE 来优化一个段段, 来识别分层表达。 不同的边界探测器可以让我们在下层和分层的空间分解结构中, 联合地将表和分层的分解值结构内, 。 实验显示我们之间的直径级结构结构结构结构显示,,, 和分级的分解系统分解速度显示, 我们的分级的分级的分解方法可以生成的分解速度, 。

0
下载
关闭预览

相关内容

【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
已删除
inpluslab
8+阅读 · 2019年10月29日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
6+阅读 · 2018年6月21日
VIP会员
相关资讯
已删除
inpluslab
8+阅读 · 2019年10月29日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员