We propose efficient and parallel algorithms for the implementation of the high-order continuous time Galerkin method for dissipative and wave propagation problems. By using Legendre polynomials as shape functions, we obtain a special structure of the stiffness matrix which allows us to extend the diagonal Pad\'e approximation to solve ordinary differential equations with source terms. The unconditional stability, $hp$ error estimates, and $hp$ superconvergence at the nodes of the continuous time Galerkin method are proved. Numerical examples confirm our theoretical results.
翻译:我们提出高效和平行的算法,用于实施高顺序连续时间的Galerkin方法,解决消散和波波传播问题。我们通过使用图例多面形函数作为形状函数,获得了僵硬矩阵的特殊结构,使我们能够扩展对角帕德近距离,用源条件解决普通差异方程。在连续时间加勒金方法节点的无条件稳定性、$hp$误差估计和$hp$超级一致得到了证明。数字实例证实了我们的理论结果。</s>