We study the convergence rate of discretized Riemannian Hamiltonian Monte Carlo on sampling from distributions in the form of $e^{-f(x)}$ on a convex set $\mathcal{M}\subset\mathbb{R}^{n}$. We show that for distributions in the form of $e^{-\alpha^{\top}x}$ on a polytope with $m$ constraints, the convergence rate of a family of commonly-used integrators is independent of $\left\Vert \alpha\right\Vert_2$ and the geometry of the polytope. In particular, the Implicit Midpoint Method (IMM) and the generalized Leapfrog integrator (LM) have a mixing time of $\widetilde{O}\left(mn^{3}\right)$ to achieve $\epsilon$ total variation distance to the target distribution. These guarantees are based on a general bound on the convergence rate for densities of the form $e^{-f(x)}$ in terms of parameters of the manifold and the integrator. Our theoretical guarantee complements the empirical results of [KLSV22], which shows that RHMC with IMM can sample ill-conditioned, non-smooth and constrained distributions in very high dimension efficiently in practice.
翻译:我们研究了以美元-f(x)美元为单位分散的里曼尼安·汉密尔顿·蒙特卡洛对以美元-美元(x)美元为单位的分布采样的混合率。我们研究的是,对于以美元为单位的聚点以美元(mathcal{M ⁇ subset\mathbb{R ⁇ n}美元)为单位的分布采样率。我们显示,对于以美元-alpha ⁇ _top}x美元为单位的分散采样率,一个常用集成体家庭的合并率独立于$left\Valpha\right\Vert_2美元和多元体的几何形状。特别是,隐含中间点方法(IMMM)和通用的莱普罗格化集成体(LM)的混合时间是$\\\\\\ alphred{O\\\ left(m ⁇ 3 ⁇ right)美元,以美元达到目标分布的完全变异的距离。这些保证的组合的组合是依据表格($x)密度的趋同率参数的趋同SLIS的理论结果。