We study the reknown deconvolution problem of recovering a distribution function from independent replicates (signal) additively contaminated with random errors (noise), whose distribution is known. We investigate whether a Bayesian nonparametric approach for modelling the latent distribution of the signal can yield inferences with asymptotic frequentist validity under the $L^1$-Wasserstein metric. When the error density is ordinary smooth, we develop two inversion inequalities relating either the $L^1$ or the $L^1$-Wasserstein distance between two mixture densities (of the observations) to the $L^1$-Wasserstein distance between the corresponding distributions of the signal. This smoothing inequality improves on those in the literature. We apply this general result to a Bayesian approach bayes on a Dirichlet process mixture of normal distributions as a prior on the mixing distribution (or distribution of the signal), with a Laplace or Linnik noise. In particular we construct an \textit{adaptive} approximation of the density of the observations by the convolution of a Laplace (or Linnik) with a well chosen mixture of normal densities and show that the posterior concentrates at the minimax rate up to a logarithmic factor. The same prior law is shown to also adapt to the Sobolev regularity level of the mixing density, thus leading to a new Bayesian estimation method, relative to the Wasserstein distance, for distributions with smooth densities.


翻译:我们研究从独立复制(信号)中恢复经销功能的已知分流问题,从独立复制(信号)被随机错误(噪音)污染的附加性差(噪音)中恢复分配功能,这是已知的分流问题。我们调查在模拟信号潜在分布的模型中,巴伊西亚非参数性非参数性方法能否在美元1美元-Wasserstein指标下产生无症状常常态常态有效性的推论。当误差密度平滑时,我们发展了两种反向不平等,要么是L1美元,要么是L1美元,要么是Wasserstein-Wasserstein在两种混合密度(观察的密度)到信号相应分布的平坦性距离(美元1美元-瓦瑟斯坦)之间的距离。这种平滑的平滑性方法在文献中会改善信号的潜在分布。我们将这一一般结果应用于在正常分发(或信号的分布)混合分配(拉贝特或林尼克噪音)之间。特别是我们构建了两种混合密度(观察的)密度(观察的)两个混合密度比值之间的密度差差值为1美元-瓦瑟斯坦斯坦斯坦(或林尼克)之间的距离距离距离差值距离差值距离距离差值之间的距离差值差值差差差差的比。我们将正常的频率显示显示的正常的频率比的频率比值比值比值的正常的频率比值的正常的频率比值的频率比值的频率比值比值比值的正常的比值比值比值的正常的比值比值比值比值比值比值比值,显示的正常的比值比值比值水平显示一个正常的比值水平显示一个正常的比值水平显示一个正常的比值比值水平显示一个正常的比。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
PyTorch 实战:计算 Wasserstein 距离
Python开发者
4+阅读 · 2019年3月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月14日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2017年12月25日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
PyTorch 实战:计算 Wasserstein 距离
Python开发者
4+阅读 · 2019年3月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2022年1月14日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2017年12月25日
Top
微信扫码咨询专知VIP会员