Latency and energy consumption are key metrics in the performance of deep neural network (DNN) accelerators. A significant factor contributing to latency and energy is data transfers. One method to reduce transfers or data is reusing data when multiple operations use the same data. Fused-layer accelerators reuse data across operations in different layers by retaining intermediate data in on-chip buffers, which has been shown to reduce energy consumption and latency. Moreover, the intermediate data is often tiled (i.e., broken into chunks) to reduce the on-chip buffer capacity required to reuse the data. Because on-chip buffer capacity is frequently more limited than computation units, fused-layer dataflow accelerators may also recompute certain parts of the intermediate data instead of retaining them in a buffer. Achieving efficient trade-offs between on-chip buffer capacity, off-chip transfers, and recomputation requires systematic exploration of the fused-layer dataflow design space. However, prior work only explored a subset of the design space, and more efficient designs are left unexplored. In this work, we propose (1) a more extensive design space that has more choices in terms of tiling, data retention, recomputation and, importantly, allows us to explore them in combination, (2) a taxonomy to systematically specify designs, and (3) a model, LoopTree, to evaluate the latency, energy consumption, buffer capacity requirements, and off-chip transfers of designs in this design space. We validate our model against a representative set of prior architectures, achieving a worst-case 4% error. Finally, we present case studies that show how exploring this larger space results in more efficient designs (e.g., up to a 10$\times$ buffer capacity reduction to achieve the same off-chip transfers).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员