This article addresses several fundamental issues associated with the approximation theory of neural networks, including the characterization of approximation spaces, the determination of the metric entropy of these spaces, and approximation rates of neural networks. For any activation function $\sigma$, we show that the largest Banach space of functions which can be efficiently approximated by the corresponding shallow neural networks is the space whose norm is given by the gauge of the closed convex hull of the set $\{\pm\sigma(\omega\cdot x + b)\}$. We characterize this space for the ReLU$^k$ and cosine activation functions and, in particular, show that the resulting gauge space is equivalent to the spectral Barron space if $\sigma=\cos$ and is equivalent to the Barron space when $\sigma={\rm ReLU}$. Our main result establishes the precise asymptotics of the $L^2$-metric entropy of the unit ball of these guage spaces and, as a consequence, the optimal approximation rates for shallow ReLU$^k$ networks. The sharpest previous results hold only in the special case that $k=0$ and $d=2$, where the metric entropy has been determined up to logarithmic factors. When $k > 0$ or $d > 2$, there is a significant gap between the previous best upper and lower bounds. We close all of these gaps and determine the precise asymptotics of the metric entropy for all $k \geq 0$ and $d\geq 2$, including removing the logarithmic factors previously mentioned. Finally, we use these results to quantify how much is lost by Barron's spectral condition relative to the convex hull of $\{\pm\sigma(\omega\cdot x + b)\}$ when $\sigma={\rm ReLU}^k$.
翻译:文章涉及与神经网络近似理论相关的若干基本问题, 包括近似空间的定性, 确定这些空间的公吨值, 以及神经网络的近似率。 对于任何激活功能 $\ sgma$, 我们显示, 最大的Banach 功能空间, 可以被相应的浅神经网络有效近似, 其标准空间是由 $\ pm\ sgma (\ omega\ cdot x + b) 集的闭合锥体的测量器给予的。 我们将这个空间描述为 $ 0, 美元 和 cosine 激活功能, 特别是, 对于任何激活功能, 如果 $\ gma\ co$, 我们显示 最大Banach 功能空间相当于 光谱 Barron空间, $\ rqrqrm REU} 。 我们的主要结果显示, $ 2 美元 和 美元 美元 内端端网络的最小直径 率 和 美元 内端值 。