This article addresses several fundamental issues associated with the approximation theory of neural networks, including the characterization of approximation spaces, the determination of the metric entropy of these spaces, and approximation rates of neural networks. For any activation function $\sigma$, we show that the largest Banach space of functions which can be efficiently approximated by the corresponding shallow neural networks is the space whose norm is given by the gauge of the closed convex hull of the set $\{\pm\sigma(\omega\cdot x + b)\}$. We characterize this space for the ReLU$^k$ and cosine activation functions and, in particular, show that the resulting gauge space is equivalent to the spectral Barron space if $\sigma=\cos$ and is equivalent to the Barron space when $\sigma={\rm ReLU}$. Our main result establishes the precise asymptotics of the $L^2$-metric entropy of the unit ball of these guage spaces and, as a consequence, the optimal approximation rates for shallow ReLU$^k$ networks. The sharpest previous results hold only in the special case that $k=0$ and $d=2$, where the metric entropy has been determined up to logarithmic factors. When $k > 0$ or $d > 2$, there is a significant gap between the previous best upper and lower bounds. We close all of these gaps and determine the precise asymptotics of the metric entropy for all $k \geq 0$ and $d\geq 2$, including removing the logarithmic factors previously mentioned. Finally, we use these results to quantify how much is lost by Barron's spectral condition relative to the convex hull of $\{\pm\sigma(\omega\cdot x + b)\}$ when $\sigma={\rm ReLU}^k$.


翻译:文章涉及与神经网络近似理论相关的若干基本问题, 包括近似空间的定性, 确定这些空间的公吨值, 以及神经网络的近似率。 对于任何激活功能 $\ sgma$, 我们显示, 最大的Banach 功能空间, 可以被相应的浅神经网络有效近似, 其标准空间是由 $\ pm\ sgma (\ omega\ cdot x + b) 集的闭合锥体的测量器给予的。 我们将这个空间描述为 $ 0, 美元 和 cosine 激活功能, 特别是, 对于任何激活功能, 如果 $\ gma\ co$, 我们显示 最大Banach 功能空间相当于 光谱 Barron空间, $\ rqrqrm REU} 。 我们的主要结果显示, $ 2 美元 和 美元 美元 内端端网络的最小直径 率 和 美元 内端值 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月12日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年4月1日
Arxiv
0+阅读 · 2021年4月1日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月12日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员