Finding the $r\times r$ submatrix of maximum volume of a matrix $A\in\mathbb R^{n\times n}$ is an NP hard problem that arises in a variety of applications. We propose a new greedy algorithm of cost $\mathcal O(n)$, for the case $A$ symmetric positive semidefinite (SPSD) and we discuss its extension to related optimization problems such as the maximum ratio of volumes. In the second part of the paper we prove that any SPSD matrix admits a cross approximation built on a principal submatrix whose approximation error is bounded by $(r+1)$ times the error of the best rank $r$ approximation in the nuclear norm. In the spirit of recent work by Cortinovis and Kressner we derive some deterministic algorithms which are capable to retrieve a quasi optimal cross approximation with cost $\mathcal O(n^3)$.
翻译:查找 $A\ in\ mathbb R ⁇ n\time n} 矩阵最大容量的 $r\time r $ r 的子矩阵 $_times r r romatrix $A\ in\ mathbrb R ⁇ n\ time n} 是一个在各种应用中产生的NP 难题。 我们建议对案件采用一种新的贪婪算法 $\ mathcal O(n)$(n)$($), 用于对称正对正半定值( SPSD), 我们讨论其延伸至相关优化问题, 如最大量比率。 在文件第二部分, 我们证明任何SPSD 矩阵都接受一个基于主要子矩阵的交叉近似差值, 其近似值由 $( r+1) 乘以核规范中最优等级的 $( $r$) 近似值差值。 。 本着Cortinovis 和 Kresner最近的工作精神, 我们得出了某种确定性算法的算法算法, 能够以 $\ mathcal O (n_3$ (n) $ $ $ $ (n_3) 。