We investigate a market without money in which agents can offer certain goods (or multiple copies of an agent-specific good) in exchange for goods of other agents. The exchange must be balanced in the sense that each agent should receive a quantity of good(s) equal to the one she transfers to others. In addition, each agent has strict preferences over the agents from which she will receive goods, and there is an upper bound on the volume of each transaction and a weight reflecting its social importance or its cardinal utility for the two agents. We propose a simple variant of the Top Trading Cycles mechanism that finds a Pareto optimal balanced exchange. We then offer necessary and sufficient conditions for a balanced exchange to be Pareto optimal and exploit these to obtain a recognition procedure. This procedure can detect whether a given exchange is Pareto optimal and, if not, improve it to become Pareto optimal in polynomial time. Last, we show how to obtain a Pareto optimal balanced exchange of maximum weight in two special cases.
翻译:我们调查一个没有金钱的市场,使代理商能够提供某些货物(或代理商特定货物的多份副本)以换取其他代理商的货物。这种交换必须平衡,因为每个代理商应当得到相当于她向他人转让的货物的数量。此外,每个代理商对她从其中接收货物的代理商有严格的偏好,对每笔交易的数量有一个上限,其重量反映其社会重要性或对两个代理商的主要用途。我们建议了一个简单的顶级交易周期机制的变式,找到最佳平衡交易机制。我们随后为平衡交易提供了必要和充分的条件,使帕雷托最佳地进行平衡的交换,并利用这些交换获得承认程序。这一程序可以检测某一交易是否最佳,如果不是的话,则改进该交易,使其在混合时间成为最佳的帕雷托。最后,我们展示了如何在两个特殊情况下获得最佳平衡的最大重量交换。