Photoacoustic tomography (PAT) is a novel and promising technology in hybrid medical imaging that involves generating acoustic waves in the object of interest by stimulating electromagnetic energy. The acoustic wave is measured outside the object. One of the key mathematical problems in PAT is the reconstruction of the initial function that contains diagnostic information from the solution of the wave equation on the surface of the acoustic transducers. Herein, we propose a wave forward operator that assigns an initial function to obtain the solution of the wave equation on a unit sphere. Under the assumption of the radial variable speed of ultrasound, we obtain the singular value decomposition of this wave forward operator by determining the orthonormal basis of a certain Hilbert space comprising eigenfunctions. In addition, numerical simulation results obtained using the continuous Galerkin method are utilized to validate the inversion resulting from the singular value decomposition.
翻译:光声学断层摄影(PAT)是混合医学成像中的一种新颖和有希望的技术,它涉及通过刺激电磁能量在受关注对象中产生声波。声波是在物体之外测量的。PAT的关键数学问题之一是重建初始功能,该功能包含来自声学转换器表面波方程解决方案的诊断性信息。在此,我们提议一个波前操作器,该操作器将最初的功能指派给一个单位范围内的波方程的解析。根据超声波的辐射变异速度的假设,我们通过确定由机能功能组成的某个Hilbert空间的异常基础,获得了这一波前方操作器的单值分解。此外,还利用连续的Galerkin方法获得的数字模拟结果来验证单值分解形成的反位结果。