Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which are common in statistical applications. We propose a simple but generally applicable auxiliary variable method, which can be used together with the CPF in order to perform efficient inference with diffuse initial distributions. The method only requires simulatable Markov transitions that are reversible with respect to the initial distribution, which can be improper. We focus in particular on random-walk type transitions which are reversible with respect to a uniform initial distribution (on some domain), and autoregressive kernels for Gaussian initial distributions. We propose to use on-line adaptations within the methods. In the case of random-walk transition, our adaptations use the estimated covariance and acceptance rate adaptation, and we detail their theoretical validity. We tested our methods with a linear-Gaussian random-walk model, a stochastic volatility model, and a stochastic epidemic compartment model with time-varying transmission rate. The experimental findings demonstrate that our method works reliably with little user specification, and can be substantially better mixing than a direct particle Gibbs algorithm that treats initial states as parameters.
翻译:有条件粒子过滤器(CPFs)是普通非线性/非Gausian隐藏的Markov模型的强大光滑算法,但是,在统计应用中常见的零散初始分布中,中央伙伴可能效率低或难以应用,分散的初始分布可能是常见的。我们建议一种简单但普遍适用的辅助可变方法,可以与中央伙伴一起使用,以便以分散的初始分布进行有效的推断。这个方法只要求模拟可逆的Markov转换,这种转换在最初分布方面可能是不适当的。我们特别侧重于随机行类型的过渡,这种过渡在统一的初始分布(某些域)方面是可以逆转的,以及高斯最初分布时的自动递增内核。我们提议在方法中采用在线调整方法。在随机迁移时,我们的适应方法使用估计的易变和接受率适应,我们细化了它们的理论有效性。我们用线性-加西随机行模式测试了我们的方法,一种随机波动模型,一种随机性波动模型,以及一种可逆性小的螺旋性模型,可以用来反转的,在高斯初步分布式分配的内核模型上展示我们用户直接的精确的血管分析分析分析模型。