Recommender systems are intrinsically tied to a reliability/coverage dilemma: The more reliable we desire the forecasts, the more conservative the decision will be and thus, the fewer items will be recommended. This leads to a significant drop in the novelty of these systems, since instead of recommending uncertain unusual items, they focus on predicting items with guaranteed success. In this paper, we propose the inclusion of a new term in the learning process of matrix factorization-based recommender systems, called recklessness, that takes into account the variance of the output probability distribution of the predicted ratings. In this way, gauging this recklessness measure we can force more spiky output distribution, enabling the control of the risk level desired when making decisions about the reliability of a prediction. Experimental results demonstrate that recklessness not only allows for risk regulation but also improves the quantity and quality of predictions provided by the recommender system.
翻译:暂无翻译