We consider the meshless solution of PDEs via symmetric kernel collocation by using greedy kernel methods. In this way we avoid the need for mesh generation, which can be challenging for non-standard domains or manifolds. We introduce and discuss different kind of greedy selection criteria, such as the PDE-P -greedy and the PDE-f -greedy for collocation point selection. Subsequently we analyze the convergence rates of these algorithms and provide bounds on the approximation error in terms of the number of greedily selected points. Especially we prove that target-data dependent algorithms, i.e. those using knowledge of the right hand side functions of the PDE, exhibit faster convergence rates. The provided analysis is applicable to PDEs both on domains and manifolds. This fact and the advantages of target-data dependent algorithms are highlighted by numerical examples.
翻译:我们通过使用贪婪的内核方法来考虑通过对称内核同位法来考虑PDE的无孔不入的解决方案。 这样我们就避免了对网格生成的需求,因为网格生成对于非标准域或元体可能具有挑战性。 我们引入并讨论不同种类的贪婪选择标准, 如 PDE-P-greedy 和 PDE-f-greedy 用于同位点选择。 随后我们分析了这些算法的趋同率, 并在贪婪选定点的数量方面提供了近似误差的界限。 尤其是我们证明, 目标数据依赖算法, 即那些使用PDE右侧函数的知识的人, 表现出更快的趋同率。 所提供的分析适用于PDE 的域和元码, 数字例子突出了这个事实和依赖目标数据算法的优点。