Collocated tactile sensing is a fundamental enabling technology for dexterous manipulation. However, deformable sensors introduce complex dynamics between the robot, grasped object, and environment that must be considered for fine manipulation. Here, we propose a method to learn soft tactile sensor membrane dynamics that accounts for sensor deformations caused by the physical interaction between the grasped object and environment. Our method combines the perceived 3D geometry of the membrane with proprioceptive reaction wrenches to predict future deformations conditioned on robot action. Grasped object poses are recovered from membrane geometry and reaction wrenches, decoupling interaction dynamics from the tactile observation model. We benchmark our approach on two real-world contact-rich tasks: drawing with a grasped marker and in-hand pivoting. Our results suggest that explicitly modeling membrane dynamics achieves better task performance and generalization to unseen objects than baselines.
翻译:定位的触动感测是极易操作的基本赋能技术。 但是, 变形传感器引入了机器人、 被捕获对象和环境之间的复杂动态, 必须考虑对其进行精密操作。 在这里, 我们提出一种方法来学习软触动感应感应膜动态, 用于计算被捕捉对象与环境之间物理互动造成的感应变形。 我们的方法将感知到的三维膜的几何与自动反应扳手结合起来, 以预测以机器人动作为条件的未来变形。 碎形物体的构成是从膜几何和反动扳手中回收的, 将交互动态与触动观察模型脱钩。 我们以两种现实世界接触丰富的任务来衡量我们的方法: 用被捕捉的标记和手动的活化。 我们的结果表明, 明确的模范膜动态能够比基线更好地实现任务性表现和对看不见物体的概括化。