We study the welfare structure in two-sided large random matching markets. In the model, each agent has a latent personal score for every agent on the other side of the market and her preferences follow a logit model based on these scores. Under a contiguity condition, we provide a tight description of stable outcomes. First, we identify an intrinsic fitness for each agent that represents her relative competitiveness in the market, independent of the realized stable outcome. The intrinsic fitness values correspond to scaling coefficients needed to make a latent mutual matrix bi-stochastic, where the latent scores can be interpreted as a-priori probabilities of a pair being matched. Second, in every stable (or even approximately stable) matching, the welfare or the ranks of the agents on each side of the market, when scaled by their intrinsic fitness, have an approximately exponential empirical distribution. Moreover, the average welfare of agents on one side of the market is sufficient to determine the average on the other side. Overall, each agent's welfare is determined by a global parameter, her intrinsic fitness, and an extrinsic factor with exponential distribution across the population.


翻译:我们在双面大型随机匹配市场中研究福利结构。 在模型中,每个代理商对市场另一侧的每个代理商都有潜在的个人评分,她的偏好遵循基于这些评分的逻辑模型。 在毗连条件下,我们提供了稳定结果的严格描述。首先,我们确定每个代理商的内在适合性,代表其在市场上的相对竞争力,独立于已实现的稳定结果。内在健康价值与使潜在的相互矩阵双随机化所需的缩放系数相对应,其中潜在评分可以被解释为一对匹配的优先概率。第二,在每一个稳定(甚至大约稳定)的匹配中,市场两侧的代理商的福利或级别,如果按其内在健康程度来衡量,则大致具有指数性的经验分布。此外,市场一侧的代理商的平均福利足以确定另一侧的平均值。总体而言,每个代理商的福利由全球参数、其内在健康水平以及人口指数分布的极限因素决定。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
128+阅读 · 2023年1月29日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月7日
Arxiv
0+阅读 · 2023年4月7日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
12+阅读 · 2021年6月29日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
128+阅读 · 2023年1月29日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员