In a recent breakthrough, Chen, Hirahara and Ren prove that $\mathsf{S_2E}/_1 \not\subset \mathsf{SIZE}[2^n/n]$ by giving a single-valued $\mathsf{FS_2P}$ algorithm for the Range Avoidance Problem ($\mathsf{Avoid}$) that works for infinitely many input size $n$. Building on their work, we present a simple single-valued $\mathsf{FS_2P}$ algorithm for $\mathsf{Avoid}$ that works for all input size $n$. As a result, we obtain the circuit lower bound $\mathsf{S_2E} \not\subset \mathsf{SIZE}[2^n/n]$ and many other corollaries: 1. Near-maximum circuit lower bound for $\mathsf{\Sigma_2E} \cap \mathsf{\Pi_2E}$ and $\mathsf{ZPE}^{\mathsf{NP}}$. 2. Pseudodeterministic $\mathsf{FZPP}^{\mathsf{NP}}$ constructions for: Ramsey graphs, rigid matrices, pseudorandom generators, two-source extractors, linear codes, hard truth tables, and $K^{poly}$-random strings.
翻译:暂无翻译