We give a fully dynamic algorithm maintaining a $(1-\varepsilon)$-approximate directed densest subgraph in $\tilde{O}(\log^3(n)/\varepsilon^6)$ amortized time or $\tilde{O}(\log^4(n)/\varepsilon^7)$ per edge update (where $\tilde{O}$ hides $\log\log$ factors), based on earlier work by Chekuri and Quanrud [arXiv:2210.02611]. This result improves on earlier work done by Sawlani and Wang [arXiv:1907.03037], which guarantees $O(\log^5(n)/\varepsilon^7)$ worst case time for edge insertions and deletions.
翻译:暂无翻译