The $f$-fault-toleratant connectivity labeling ($f$-FTC labeling) is a scheme of assigning each vertex and edge with a small-size label such that one can determine the connectivity of two vertices $s$ and $t$ under the presence of at most $f$ faulty edges only from the labels of $s$, $t$, and the faulty edges. This paper presents a new deterministic $f$-FTC labeling scheme attaining $O(f^2 \mathrm{polylog}(n))$-bit label size and a polynomial construction time, which settles the open problem left by Dory and Parter [PODC'21]. The key ingredient of our construction is to develop a deterministic counterpart of the graph sketch technique by Ahn, Guha, and McGreger [SODA'12], via some natural connection with the theory of error-correcting codes. This technique removes one major obstacle in de-randomizing the Dory-Parter scheme. The whole scheme is obtained by combining this technique with a new deterministic graph sparsification algorithm derived from the seminal $\epsilon$-net theory, which is also of independent interest. The authors believe that our new technique is potentially useful in the future exploration of more efficient FTC labeling schemes and other related applications based on graph sketches. An interesting byproduct of our result is that one can obtain an improved randomized $f$-FTC labeling scheme attaining adaptive query processing time (i.e., the processing time does not depend on $f$, but only on the actual number of faulty edges). This scheme is easily obtained from our deterministic scheme just by replacing the graph sparsification part with the conventional random edge sampling.
翻译:美元、 美元、 美元和错误边缘的错误边缘。 本文展示了一个新的确定性美元- 美元- 美元( 美元) 的计算方法, 用一个小标签来分配每个顶点和边缘, 以小标签来决定两个顶点和边缘的连接性, 从而可以解决 Dory 和 Parter [PODC' 21] 留下的开放问题。 我们的构造的关键成分是开发一个与Ahn、 Guha 和 McGreger 的图形素描技术相对应的确定性对应方, 与有用的校正代码理论有某种自然联系。 这个技术可以消除一个主要障碍, 而不是将Dory- Parter 的平价调换回。 这个方法可以将我们这个与美元有关的方法整合起来。 这个方法可以将我们这个方法的精细化法 与一个未来的计算方法 。 这个方法可以将我们这个方法的精细化法化法 与一个未来的计算法 。 这个方法可以将我们 的精细的精细的精细的精细的计算方法结合成一个 。