Hyperparameter tuning is one of the the most time-consuming parts in machine learning. Despite the existence of modern optimization algorithms that minimize the number of evaluations needed, evaluations of a single setting may still be expensive. Usually a resampling technique is used, where the machine learning method has to be fitted a fixed number of k times on different training datasets. The respective mean performance of the k fits is then used as performance estimator. Many hyperparameter settings could be discarded after less than k resampling iterations if they are clearly inferior to high-performing settings. However, resampling is often performed until the very end, wasting a lot of computational effort. To this end, we propose the Sequential Random Search (SQRS) which extends the regular random search algorithm by a sequential testing procedure aimed at detecting and eliminating inferior parameter configurations early. We compared our SQRS with regular random search using multiple publicly available regression and classification datasets. Our simulation study showed that the SQRS is able to find similarly well-performing parameter settings while requiring noticeably fewer evaluations. Our results underscore the potential for integrating sequential tests into hyperparameter tuning.


翻译:超强参数调整是机器学习中最耗时的部分之一。 尽管存在现代优化算法,可以最大限度地减少所需评价的数量, 但对单一设置的评价可能仍然很昂贵。 通常使用重标技术, 机器学习方法必须在不同的培训数据集中安装固定的 k 次数。 kfet 的各自平均性能随后用作性能估计仪。 许多超度参数设置如果明显低于高性能设置, 则可以被丢弃, 低于 k 重复性能。 然而, 重新标定往往进行到最后, 浪费大量计算努力。 为此, 我们提议采用序列随机搜索( SQRS), 通过顺序测试程序延长常规随机搜索算法, 旨在早期检测和消除低度参数配置。 我们比较了我们的SQRS 和定期随机搜索, 使用多种公开提供的回归和分类数据集。 我们的模拟研究表明, SQRS 能够找到类似性能的参数设置, 同时需要明显减少评价。 我们的结果表明, 将序列测试与超低调的可能性。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月26日
Arxiv
0+阅读 · 2023年1月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员