Hyperparameter tuning is one of the the most time-consuming parts in machine learning. Despite the existence of modern optimization algorithms that minimize the number of evaluations needed, evaluations of a single setting may still be expensive. Usually a resampling technique is used, where the machine learning method has to be fitted a fixed number of k times on different training datasets. The respective mean performance of the k fits is then used as performance estimator. Many hyperparameter settings could be discarded after less than k resampling iterations if they are clearly inferior to high-performing settings. However, resampling is often performed until the very end, wasting a lot of computational effort. To this end, we propose the Sequential Random Search (SQRS) which extends the regular random search algorithm by a sequential testing procedure aimed at detecting and eliminating inferior parameter configurations early. We compared our SQRS with regular random search using multiple publicly available regression and classification datasets. Our simulation study showed that the SQRS is able to find similarly well-performing parameter settings while requiring noticeably fewer evaluations. Our results underscore the potential for integrating sequential tests into hyperparameter tuning.
翻译:超强参数调整是机器学习中最耗时的部分之一。 尽管存在现代优化算法,可以最大限度地减少所需评价的数量, 但对单一设置的评价可能仍然很昂贵。 通常使用重标技术, 机器学习方法必须在不同的培训数据集中安装固定的 k 次数。 kfet 的各自平均性能随后用作性能估计仪。 许多超度参数设置如果明显低于高性能设置, 则可以被丢弃, 低于 k 重复性能。 然而, 重新标定往往进行到最后, 浪费大量计算努力。 为此, 我们提议采用序列随机搜索( SQRS), 通过顺序测试程序延长常规随机搜索算法, 旨在早期检测和消除低度参数配置。 我们比较了我们的SQRS 和定期随机搜索, 使用多种公开提供的回归和分类数据集。 我们的模拟研究表明, SQRS 能够找到类似性能的参数设置, 同时需要明显减少评价。 我们的结果表明, 将序列测试与超低调的可能性。