Large pretrained language models have been widely used in downstream NLP tasks via task-specific fine-tuning. Recently, an array of Parameter-Efficient Fine-Tuning (PEFT) methods have also achieved strong task performance while updating a much smaller number of parameters compared to full model tuning. However, it is non-trivial to make informed per-task design choices (i.e., to create PEFT configurations) concerning the selection of PEFT architectures and modules, the number of tunable parameters, and even the layers in which the PEFT modules are inserted. Consequently, it is highly likely that the current, manually set PEFT configurations might be suboptimal for many tasks from the perspective of the performance-to-efficiency trade-off. To address the core question of the PEFT configuration selection that aims to control and maximise the balance between performance and parameter efficiency, we first define a rich configuration search space spanning multiple representative PEFT modules along with finer-grained configuration decisions over the modules (e.g., parameter budget, insertion layer). We then propose AutoPEFT, a novel framework to traverse this configuration space: it automatically configures multiple PEFT modules via high-dimensional Bayesian optimisation. We show the resource scalability and task transferability of AutoPEFT-found configurations, outperforming existing PEFT methods on average on the standard GLUE benchmark while conducting the configuration search on a single task. The per-task AutoPEFT-based configuration search even outperforms full-model fine-tuning.


翻译:在下游的NLP任务中,通过针对具体任务的微调,广泛使用了大型预先培训的语言模型。最近,一系列的Parameter-Efficient Fine-Tuning(PEFT)方法也取得了很强的任务性能,同时从业绩到效率全面调整的角度更新了大量参数。然而,在选择PEFT架构和模块、金枪鱼参数数量,甚至插入PEFT模块的层次方面,作出知情的每个任务设计选择(即创建PEFT配置)是非三边性的。因此,从业绩到效率全面调整的角度,目前手工设置的PEEFT配置也很可能不理想。然而,为了解决PEEFT配置选择的核心问题,目的是控制并最大限度地实现业绩和参数效率之间的平衡,我们首先确定一个内容丰富的配置搜索空间,覆盖多个具有代表性的PEFT模块,以及基于精细的配置决定(例如,参数预算,插入层),因此,现在很可能是手动式的PEFTFT配置。我们随后提议一个通过高级的系统平均配置格式,然后通过S-FTFFT任务向当前的自动配置结构转换一个新的框架框架框架,我们提出一个通过Slovelopferfterforferal-forforti 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月20日
Arxiv
0+阅读 · 2023年3月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员