Computer-Generated Holography (CGH) algorithms often fall short in matching simulations with results from a physical holographic display. Our work addresses this mismatch by learning the holographic light transport in holographic displays. Using a camera and a holographic display, we capture the image reconstructions of optimized holograms that rely on ideal simulations to generate a dataset. Inspired by the ideal simulations, we learn a complex-valued convolution kernel that can propagate given holograms to captured photographs in our dataset. Our method can dramatically improve simulation accuracy and image quality in holographic displays while paving the way for physically informed learning approaches.
翻译:计算机光学全息学(CGH)算法往往在将模拟与物理全息显示结果相匹配方面落后。 我们的工作通过在全息显示中学习全息显示全息光传输方法来解决这一不匹配问题。 我们使用相机和全息显示方法,拍摄了依靠理想模拟生成数据集的最佳全息图图像的图像重建。 在理想模拟的启发下,我们学习了一个复杂价值的共变内核,它可以传播给全息图,在数据集中捕捉到照片。 我们的方法可以极大地提高全息显示的模拟准确性和图像质量,同时为实际知情的学习方法铺平道路。