We consider bipartite mixed states in a $d\otimes d$ quantum system. We say that $\rho$ is PPT if its partial transpose $1 \otimes T (\rho)$ is positive semidefinite, and otherwise $\rho$ is NPT. The well-known Werner states are divided into three types: (a) the separable states (the same as the PPT states); (b) the one-distillable states (necessarily NPT); and (c) the NPT states which are not one-distillable. We give several different formulations and provide further evidence for validity of the conjecture that the Werner states of type (c) are not two-distillable.
翻译:我们用美元/美元(d-otimes d$)的量子体系来考虑两边混合国家。 我们说,如果部分转换1美元/美元(t)是正半无限制的,那么美元(rho)就是PPT。 众所周知的Werner国家分为三类:(a) 分立国家(与PPT国家相同);(b) 单一可分解国家(必然是《不扩散条约》);(c) 不扩散条约国家(并非一分解国家 ) 。 我们给出了几种不同的配方,并进一步证明(c) 类型(Werner) 国家不能两分解的推测的有效性。