The purpose of this paper is to correct a misconception about convolutional neural networks (CNNs). CNNs are made up of convolutional layers which are shift equivariant due to weight sharing. However, contrary to popular belief, convolutional layers are not translation equivariant, even when boundary effects are ignored and when pooling and subsampling are absent. This is because shift equivariance is a discrete symmetry while translation equivariance is a continuous symmetry. That discrete systems do not in general inherit continuous equivariances is a fundamental limitation of equivariant deep learning. We discuss two implications of this fact. First, CNNs have achieved success in image processing despite not inheriting the translation equivariance of the physical systems they model. Second, using CNNs to solve partial differential equations (PDEs) will not result in translation equivariant solvers.
翻译:本文的目的是纠正对进化神经网络(CNNs)的误解。CNN是由因重量共享而变化的变异层组成的,这些变异层是因重量共享而变化的变异层。然而,与流行的信念相反,进化层不是翻译变异,即使边界效应被忽视,没有集合和子抽样,这是因为变异是独立的对称,而翻译变异是一种连续的对称。一般来说,离散系统并不继承连续的变异,这是变异性深层学习的基本限制。我们讨论了这一事实的两个影响。首先,CNN在图像处理上取得了成功,尽管没有继承其模型物理系统的变异性翻译。第二,使用CNN解决部分差异方程式(PDEs)不会导致翻译变异式解答器。