The use of a single primary outcome is generally either recommended or required by many influential randomised trial guidelines to avoid the problem of "multiple testing". Without correction, the probability of rejecting at least one of a set of null hypotheses (the family-wise error rate) is often much greater than the nominal rate of any single test so that statistics like p-values and confidence intervals have no reliable interpretation. Cluster randomised trials though may require multiple outcomes to adequately describe the effects of often complex and multi-faceted interventions. We propose a method for inference for cluster randomised trials with multiple outcomes that ensures a nominal family-wise error rate and produces simultaneous confidence intervals with nominal "family-wise" coverage. We adapt the resampling-based stepdown procedure of Romano and Wolf (2005) using a randomisation-test approach within a generalised linear model framework. We then adapt the Robbins-Monro search procedure for confidence interval limits proposed by Garthwaite and Buckland (1996) to this stepdown process to produce a set of confidence intervals. We show that this procedure has nominal error rates and coverage in a simulation-based study of parallel and stepped-wedge cluster randomised studies and compare results from the analysis of a real-world stepped-wedge trial under both the proposed and more standard analyses.


翻译:许多有影响力的随机试验准则一般建议或要求使用单一初级结果,以避免“多重测试”问题。如果不加以纠正,拒绝至少一套无效假设之一(家庭错误率)的概率往往比任何单一试验的名义率高得多,因此,诸如p值和信任期等统计数据没有可靠的解释。分组随机试验虽然可能需要多种结果,以充分描述往往复杂和多面性干预的效果。我们提出了一种方法,用以推断集成随机试验,其结果多,确保名义上的家庭错误率,并同时产生具有名义上“家庭错错”覆盖的自信间隔。我们采用一个通用线性模型框架内的随机化测试方法,对罗马诺和沃尔夫的重现式逐步降级程序(2005年)进行调整。然后,我们调整罗宾-蒙罗宾-蒙罗对信任期限制的搜索程序,以便适当描述通常复杂和多面性干预的影响。我们提出了一种方法,以产生一套信任间隔。我们表明,这一程序在对平行和逐步调整的分组进行模拟研究以及拟议的逐步调整的分组分析中存在名义错误率和覆盖范围。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
29+阅读 · 2020年11月4日
因果关联学习,Causal Relational Learning
专知会员服务
183+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年5月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Multi-Slice Clustering for 3-order Tensor Data
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年9月20日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年5月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员