Artificial Intelligence is being employed by humans to collaboratively solve complicated tasks for search and rescue, manufacturing, etc. Efficient teamwork can be achieved by understanding user preferences and recommending different strategies for solving the particular task to humans. Prior work has focused on personalization of recommendation systems for relatively well-understood tasks in the context of e-commerce or social networks. In this paper, we seek to understand the important factors to consider while designing user-centric strategy recommendation systems for decision-making. We conducted a human-subjects experiment (n=60) for measuring the preferences of users with different personality types towards different strategy recommendation systems. We conducted our experiment across four types of strategy recommendation modalities that have been established in prior work: (1) Single strategy recommendation, (2) Multiple similar recommendations, (3) Multiple diverse recommendations, (4) All possible strategies recommendations. While these strategy recommendation schemes have been explored independently in prior work, our study is novel in that we employ all of them simultaneously and in the context of strategy recommendations, to provide us an in-depth overview of the perception of different strategy recommendation systems. We found that certain personality traits, such as conscientiousness, notably impact the preference towards a particular type of system (p < 0.01). Finally, we report an interesting relationship between usability, alignment and perceived intelligence wherein greater perceived alignment of recommendations with one's own preferences leads to higher perceived intelligence (p < 0.01) and higher usability (p < 0.01).
翻译:人类正在利用人工智能,以合作解决复杂的搜索和救援、制造等任务。通过理解用户偏好,提出解决人类特定任务的不同战略,可以实现高效团队合作。先前的工作重点是在电子商务或社会网络方面,将相对理解的任务的建议系统个人化,在电子商务或社会网络方面,相对理解任务的建议系统个人化。在本文件中,我们力求了解在设计以用户为中心的决策战略建议系统时需要考虑的重要因素。我们进行了一个人类主题实验(n=60),以衡量不同人格类型用户对不同战略建议系统的偏好。我们进行了四类战略建议模式的实验,这些模式在先前的工作中已经确立:(1) 单一战略建议,(2) 多个类似建议,(3) 多种不同建议,(4) 所有可能的战略建议。虽然这些战略建议系统在先前的工作中是独立探讨的,但我们的研究是新颖的,因为我们同时使用所有这些战略建议,使我们深入了解不同战略建议系统的看法。我们发现某些个性特征,如良心,特别是更高程度的偏好,我们更倾向于特定类型的情报调整系统,我们最后认为是更高等级,我们更了解更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近更接近于更接近更接近更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近于更接近的等级的制度。