Personality is a psychological factor that reflects people's preferences, which in turn influences their decision-making. We hypothesize that accurate modeling of users' personalities improves recommendation systems' performance. However, acquiring such personality profiles is both sensitive and expensive. We address this problem by introducing a novel method to automatically extract personality profiles from public product review text. We then design and assess three context-aware recommendation architectures that leverage the profiles to test our hypothesis. Experiments on our two newly contributed personality datasets -- Amazon-beauty and Amazon-music -- validate our hypothesis, showing performance boosts of 3--28%.Our analysis uncovers that varying personality types contribute differently to recommendation performance: open and extroverted personalities are most helpful in music recommendation, while a conscientious personality is most helpful in beauty product recommendation. The dataset is available at https://github.com/XinyuanLu00/IRS-WSDM2023-personality-dataset.
翻译:个性是反映人们偏好的一种心理因素,这反过来又影响他们的决策。我们假设用户个性精确模型能改善推荐系统的性能。然而,获得这种个性特征既敏感又昂贵。我们通过采用新颖的方法从公共产品审查文本中自动提取个性特征简介来解决这个问题。然后我们设计和评估三个符合背景的建议结构,利用这些特征来测试我们的假设。我们的两个新贡献的个性数据集 -- -- 亚马逊-美人和亚马逊-音乐 -- -- 的实验证实了我们的假设,显示3-28 %的性能增强。我们的分析发现,不同的个性类型对推荐性表现有不同的贡献:开放和外向性人格在音乐建议中最有帮助,而一个自觉性对美产品建议则最有帮助。数据集见https://github.com/XinuanLu00/IRS-WSD2023-个性性化数据集。</s>