Domain generalization theory and methods are important for the success of Open World Pattern Recognition. The paper advances the current state-of-art works in this context by proposing a novel theoretical analysis and piratical algorithm. In particular, we revisit Domain Generalization (DG) problem, where the hypotheses are composed of a common representation mapping followed by a labeling function. Popular DG methods optimize a well-known upper bound of the risk in the unseen domain to learn both the optimal representation and labeling functions. However, the widely used bound contains a term that is not optimized due to its dual dependence on the representation mapping and the unknown optimal labeling function in the unseen domain. To fill this gap, we derive a new upper bound free of terms having such dual dependence. Our derivation leverages old and recent transport inequalities that link optimal transport metrics with information-theoretic measures. Compared to previous bounds, our bound introduces two new terms: (i) the Wasserstein-2 barycenter term for the distribution alignment between domains and (ii) the reconstruction loss term for measuring how well the data can be reconstructed from its representation. Based on the new upper bound, we propose a novel DG algorithm that simultaneously minimizes the classification loss, the barycenter loss, and the reconstruction loss. Experiments on several datasets demonstrate superior performance of the proposed method compared to the state-of-the-art DG algorithms.
翻译:广域通用理论和方法对于开放世界模式识别的成功非常重要。 本文通过提出新颖的理论分析和光学算法来推进当前最先进的工程。 特别是, 我们重新审视了Domain Generalization (DG) 问题, 其假设由共同的代议图组成, 并附有标签功能。 大众DG 方法优化了已知的隐蔽域风险的上层界限, 以学习最佳代议和标签功能。 但是, 广泛使用的约束术语包含一个由于既依赖代表性映射,又依赖未知的最佳隐蔽域标签功能而没有优化的术语。 为了填补这一空白, 我们提出了一个新的上层免责条件, 具有双重依赖性。 我们的衍生利用了旧的和最近的运输不平等, 将最佳运输计量与信息理论计量相连接。 与以前的界限相比, 我们的界限引入了两个新术语:(i) 不同域间分配的瓦斯特斯坦-2 中标词, 以及(ii) 重建损失术语, 以衡量数据如何从其压损失率中重建, 以新的数字缩略地显示新的压损失率。 。 在新的版本上标上, 我们提议的变换了几个损失等级数据分类中,, 以新的格式显示新的版本的缩算。