This paper presents a solution to address carbon emission mitigation for end-to-end edge computing systems, including the computing at battery-powered edge devices and servers, as well as the communications between them. We design and implement, CarbonCP, a context-adaptive, carbon-aware, and uncertainty-aware AI inference framework built upon conformal prediction theory, which balances operational carbon emissions, end-to-end latency, and battery consumption of edge devices through DNN partitioning under varying system processing contexts and carbon intensity. Our experimental results demonstrate that CarbonCP is effective in substantially reducing operational carbon emissions, up to 58.8%, while maintaining key user-centric performance metrics with only 9.9% error rate.
翻译:暂无翻译