Recent research on graph embedding has achieved success in various applications. Most graph embedding methods preserve the proximity in a graph into a manifold in an embedding space. We argue an important but neglected problem about this proximity-preserving strategy: Graph topology patterns, while preserved well into an embedding manifold by preserving proximity, may distort in the ambient embedding Euclidean space, and hence to detect them becomes difficult for machine learning models. To address the problem, we propose curvature regularization, to enforce flatness for embedding manifolds, thereby preventing the distortion. We present a novel angle-based sectional curvature, termed ABS curvature, and accordingly three kinds of curvature regularization to induce flat embedding manifolds during graph embedding. We integrate curvature regularization into five popular proximity-preserving embedding methods, and empirical results in two applications show significant improvements on a wide range of open graph datasets.
翻译:最近关于图形嵌入的研究在各种应用中都取得了成功。 大多数图形嵌入方法在嵌入空间中将图的近距离保存在多块块中。 我们对这一近距离保护战略提出一个重要但被忽视的问题:图示表层模式虽然通过保持近距离而被保存在多块嵌入层中,但可能会扭曲在环形嵌入 Euclidean 空间中,因此发现它们对于机器学习模型来说变得很困难。为了解决这个问题,我们建议对曲线进行正规化,对嵌入的元件实施平整,从而防止扭曲。我们提出了一个新颖的以角度为基础的分区曲线曲线,称为 ABS 曲线, 并因此提出了三种曲线固定在图形嵌入过程中诱导出平面嵌入的元件。 我们将曲线固定化纳入五种流行的近距离嵌入方法, 两项应用的经验结果显示, 广泛的开放图表数据集有了显著的改进。