Seismic networks provide data that are used as basis both for public safety decisions and for scientific research. Their configuration affects the data completeness, which in turn, critically affects several seismological scientific targets (e.g., earthquake prediction, seismic hazard...). In this context, a key aspect is how to map earthquakes density in seismogenic areas from censored data or even in areas that are not covered by the network. We propose to predict the spatial distribution of earthquakes from the knowledge of presence locations and geological relationships, taking into account any interaction between records. Namely, in a more general setting, we aim to estimate the intensity function of a point process, conditional to its censored realization, as in geostatistics for continuous processes. We define a predictor as the best linear unbiased combination of the observed point pattern. We show that the weight function associated to the predictor is the solution of a Fredholm equation of second kind. Both the kernel and the source term of the Fredholm equation are related to the first-and second-order characteristics of the point process through the intensity and the pair correlation function. Results are presented and illustrated on simulated non-stationary point processes and real data for mapping Greek Hellenic seismicity in a region with unreliable and incomplete records.
翻译:地震网络提供数据,作为公共安全决定和科学研究的基础。其配置影响数据完整性,进而严重影响若干地震科学目标(例如地震预测、地震危害......)。在这方面,一个关键方面是,如何从受审查的数据中,甚至从网络未覆盖的地区,绘制地震在地震引发地区的密度。我们提议从存在地点和地质关系的知识中预测地震的空间分布,同时考虑到记录之间的任何相互作用。在更笼统的环境下,我们的目标是估计点进程的强度功能,但以其受审查的实现为条件,如持续进程的地理统计学中那样。我们把预测器定义为所观察到的点模式的最佳线性不偏向组合。我们表明,与预测器相关的重量功能是第二类型Fredholm方程式的解决方案。Fredholm方程式的内核和源术语都与点进程的一级和二级特征有关,通过强度和对口关联功能,我们的目标是评估点进程的强度和二级特性,但以经过审查后实现为条件,如在持续进程的地理统计学中。我们把预测器定义为所观察到的点模式中的最佳线性不偏差组合。我们表明,与预测器的重量函数是模拟地震地震中不可靠的区域。