This paper addresses the problem of multi-step time series forecasting for non-stationary signals that can present sudden changes. Current state-of-the-art deep learning forecasting methods, often trained with variants of the MSE, lack the ability to provide sharp predictions in deterministic and probabilistic contexts. To handle these challenges, we propose to incorporate shape and temporal criteria in the training objective of deep models. We define shape and temporal similarities and dissimilarities, based on a smooth relaxation of Dynamic Time Warping (DTW) and Temporal Distortion Index (TDI), that enable to build differentiable loss functions and positive semi-definite (PSD) kernels. With these tools, we introduce DILATE (DIstortion Loss including shApe and TimE), a new objective for deterministic forecasting, that explicitly incorporates two terms supporting precise shape and temporal change detection. For probabilistic forecasting, we introduce STRIPE++ (Shape and Time diverRsIty in Probabilistic forEcasting), a framework for providing a set of sharp and diverse forecasts, where the structured shape and time diversity is enforced with a determinantal point process (DPP) diversity loss. Extensive experiments and ablations studies on synthetic and real-world datasets confirm the benefits of leveraging shape and time features in time series forecasting.


翻译:本文探讨了对可能带来突然变化的非静止信号进行多步时间序列预测的问题。目前最先进的深层次学习预测方法,往往经过MSE的变体培训,缺乏在确定性和概率背景下提供精确预测的能力。为了应对这些挑战,我们提议将形状和时间标准纳入深层模型的培训目标中。我们根据动态时间扭曲(DTW)和时间扭曲指数(TDI)的顺利放松,界定形状和时间相似性和差异性,以便能够建立不同的损失功能和积极的半确定性核心。我们利用这些工具,引入了DILATE(包括SHApe和TimE在内的损失和概率预测的特性),这是一个确定性预测的新目标,明确纳入了支持精确形状和时间变化检测的两个术语。关于概率预测,我们引入了STRIPE+(预测中的Shape和时间潜水器)和Timal CondictionRislity Increditional),一个框架,提供一套精确和多样化时间预测和合成时序的精确性时间序列,其中结构化的形状和合成数据模型和模型的模型和模型化数据模型化的模型化的模型和模型的模型化,可以证实和模型的模型的模型的多样化。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年11月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2021年6月3日
Arxiv
35+阅读 · 2021年1月27日
Foreground-aware Image Inpainting
Arxiv
4+阅读 · 2019年1月17日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年11月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员