When solving combinatorial problems, pruning symmetric solution candidates from the search space is essential. Most of the existing approaches are instance-specific and focus on the automatic computation of Symmetry Breaking Constraints (SBCs) for each given problem instance. However, the application of such approaches to large-scale instances or advanced problem encodings might be problematic since the computed SBCs are propositional and, therefore, can neither be meaningfully interpreted nor transferred to other instances. As a result, a time-consuming recomputation of SBCs must be done before every invocation of a solver. To overcome these limitations, we introduce a new model-oriented approach for Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints using a form of machine learning called Inductive Logic Programming. After targeting simple combinatorial problems, we aim to extend our method to be applied also for advanced decision and optimization problems.
翻译:当解决组合问题时,必须从搜索空间对等解决方案候选人进行分解。大多数现有方法都是针对具体实例的,侧重于每个特定问题实例的对称分解制约(SBCs)的自动计算。然而,在大型实例或高级问题编码中应用这类方法可能会有问题,因为计算出来的SBCs是建议性的,因此,既不能有意义地解释,也不能转移到其他实例。因此,在每次援引一个求解器之前,都必须对SBCs进行耗时的重算。为了克服这些限制,我们引入了一个新的面向“答案设置”程序模式,将小问题实例的SBCs提升为一套可解释的一阶限制,使用被称为“不感应式逻辑编程”的机器学习形式。在针对简单的组合问题之后,我们的目标是将我们的方法扩大到用于高级决定和优化问题。