项目名称: 金纳米晶/氧化物半导体核壳纳米结构的构建及其LSPR增强的光催化性质
项目编号: No.21471004
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 无机化学
项目作者: 李本侠
作者单位: 浙江理工大学
项目金额: 80万元
中文摘要: 基于金纳米晶的局域表面等离子体共振(LSPR),构建金纳米晶/氧化物半导体核壳纳米结构,不仅可以有效防止金纳米晶的聚集和失活,而且能够使金纳米晶-半导体之间有效界面最大化,从而更有效地借助金纳米晶LSPR提高太阳光利用率、促进半导体光激发和光生载流子的有效分离,极大地提高材料体系的光催化效率和稳定性;这一设想在我们前期研究中已得到初步证实。本项目拟深入发展液相化学方法控制合成一系列金纳米晶的LSPR波长、半导体壳层的组分和厚度均可调的金/半导体核壳纳米结构材料,系统研究制备过程中所涉及的反应热力学和动力学因素,分析总结核壳纳米结构的合成规律,明确其形成机理;通过考察金/半导体复合光催化剂在太阳光驱动几种典型有机反应中的光催化性质,揭示材料的结构-性能关系,阐明金纳米晶LSPR增强半导体光催化性质的新原理;最后通过优化材料体系,调控光催化性能,实现太阳光驱动有机反应的高转化率和高选择性。
中文关键词: 可控合成;核壳纳米结构;氧化物半导体;光催化;局域表面等离子体共振
英文摘要: Based on the local surface plasmon resonance (LSPR) of Au nanocrystals, fabricating the Au-nanocrystal/oxide-semiconductor core/shell nanostructures can not only prevent the aggregation and inactivation of Au nanocrystals, but also maximize the effective interfacial area between Au nanocrystal and semiconductor. Therefore, the plasmonic Au nanocrystals can effectively harvest the sunlight, and promote the generation and separation of the charge carriers in semiconductor, which endows the photocatalysts higher solar-harvesting ability and photocatalytic efficiency. This idea has been confirmed by our previous research. This project aims to further develop the controllable synthesis of a series of Au/semiconductor core/shell nanostructures which are tunable in both the LSPR wavelenght of the Au-nanocrystal cores and the composition and thickness of the semiconductor shells, by the solution-based chemical methods. We will systematically study the reaction thermodynamics and dynamics factors involved in the synthesis process, and summarize the synthesis principle and the formation mechanism of the core/shell nanostructures. Then, the relationship between the structures and photocatalytic properties of the Au/semiconductor core/shell nanostructures will be revealed by investigating their photocatalytic performances in several typical solar-driven organic reactions. The new mechanism for LSPR-enhanced photocatalysis in the Au/semiconductor core/shell nanostructures will be clarified. Finally, it is expected to achieve the high conversion yield and selectivity of the target products in the solar-driven organic reactions, through optimizing the photocatalytic materials.
英文关键词: Controllable synthesis;Core/shell nanostructures;Oxide semiconductor;Photocatalysis;Local surface plasmon resonance