We study fair allocation of indivisible goods when agents have matroid rank valuations. Our main contribution is a simple algorithm based on the colloquial Yankee Swap procedure that computes provably fair and efficient Lorenz dominating allocations. While there exist polynomial time algorithms to compute such allocations, our proposed method improves on them in two ways. (a) Our approach is easy to understand and does not use complex matroid optimization algorithms as subroutines. (b) Our approach is scalable; it is provably faster than all known algorithms to compute Lorenz dominating allocations. These two properties are key to the adoption of algorithms in any real fair allocation setting; our contribution brings us one step closer to this goal.
翻译:扬基交换:一种针对拟阵等级估价的快速公平分配机制
翻译后的摘要:
我们研究当代理人具有拟阵等级估价时的不可分物品的公平分配问题。我们的主要贡献是一种简单算法,基于俚语扬基交换程序,计算出可以证明公平和高效的Lorenz支配分配。虽然存在多项式时间算法来计算这种分配,但我们提出的方法在两个方面上改进了它们。 (a)我们的方法易于理解,不使用复杂的拟阵优化算法作为子程序。 (b)我们的方法可扩展性好; 它被证明比所有已知的计算Lorenz支配分配的算法更快。这两个属性对于在任何实际公平分配场景中采用算法非常关键; 我们的贡献使我们更接近实现这一目标。