Alzheimer's Disease (AD), as the most devastating neurodegenerative disease worldwide, has reached nearly 10 million new cases annually. Current technology provides unprecedented opportunities to study the progression and etiology of this disease with the advanced in imaging techniques. With the recent emergence of a society driven by big data and machine learning (ML), researchers have exerted considerable effort to summarize recent advances in ML-based AD diagnosis. Here, we outline some of the most prevalent and recent ML models for assessing the progression of AD and provide insights on the challenges, opportunities, and future directions that could be advantageous to future research in AD using ML.
翻译:阿尔茨海默氏病(AD)是全世界最具破坏性的神经退化性疾病,每年达到近1 000万个新病例。目前技术以成像技术的先进为研究这一疾病的进展和病理学提供了前所未有的机会。随着最近由大数据和机器学习(ML)驱动的社会的兴起,研究人员作出了巨大努力来总结以ML为基础的反倾销诊断的最新进展。在这里,我们概述了一些最普遍和最新的ML模型,用以评估AD的进展,并提供关于挑战、机会和未来方向的深刻见解,而这些挑战、机会和未来方向可能有利于今后利用ML进行反倾销研究。