Unsupervised word segmentation in audio utterances is challenging as, in speech, there is typically no gap between words. In a preliminary experiment, we show that recent deep self-supervised features are very effective for word segmentation but require supervision for training the classification head. To extend their effectiveness to unsupervised word segmentation, we propose a pseudo-labeling strategy. Our approach relies on the observation that the temporal gradient magnitude of the embeddings (i.e. the distance between the embeddings of subsequent frames) is typically minimal far from the boundaries and higher nearer the boundaries. We use a thresholding function on the temporal gradient magnitude to define a psuedo-label for wordness. We train a linear classifier, mapping the embedding of a single frame to the pseudo-label. Finally, we use the classifier score to predict whether a frame is a word or a boundary. In an empirical investigation, our method, despite its simplicity and fast run time, is shown to significantly outperform all previous methods on two datasets.


翻译:在语音中进行无监督单词分割是具有挑战性的,因为在口语中通常单词之间没有停顿。在初步的实验中,我们表明,最近的深度自监督特征对于单词分割非常有效,但需要监督以训练分类头。我们提出一种伪标签策略,将它们的有效性扩展到无监督单词分割。我们的方法依赖于一种观察方式,即嵌入的时间梯度大小(即连续帧嵌入之间的距离)通常在边界附近较高,在边界远离较小。我们对时间梯度大小使用一个阈值函数来定义“单词”的伪标签。我们训练一个线性分类器,将单帧的嵌入映射到伪标签。最后,我们使用分类器得分来预测帧是单词还是界限。在实证研究中,我们的方法尽管简单且运行时间较快,但被证明在两个数据集上显着优于所有先前方法。

1
下载
关闭预览

相关内容

基于几何结构预训练的蛋白质表征学习
专知会员服务
14+阅读 · 2022年8月21日
专知会员服务
88+阅读 · 2021年6月29日
【Contextual Embedding】什么时候上下文嵌入值得使用?
专知会员服务
15+阅读 · 2020年8月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
23+阅读 · 2019年11月4日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
基于几何结构预训练的蛋白质表征学习
专知会员服务
14+阅读 · 2022年8月21日
专知会员服务
88+阅读 · 2021年6月29日
【Contextual Embedding】什么时候上下文嵌入值得使用?
专知会员服务
15+阅读 · 2020年8月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
23+阅读 · 2019年11月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员