A design is a collection of distinct points in a given set $X$, which is assumed to be a compact subset of $R^d$, and the mesh-ratio of a design is the ratio of its fill distance to its separation radius. The uniformity constant of a sequence of nested designs is the smallest upper bound for the mesh-ratios of the designs. We derive a lower bound on this uniformity constant and show that a simple greedy construction achieves this lower bound. We then extend this scheme to allow more flexibility in the design construction.
翻译:设计是一套在给定的一套美元中的不同点的集合,假定该套款为一小块美元,而设计中的网状比是其与分离半径的填充距离比。嵌套设计序列的统一性常数是设计网状的最小的上限。我们从这个统一的常数中得出一个较低的约束,并表明简单的贪婪建筑达到这个较低的约束。然后我们扩大这个计划,以便在设计工程中允许更大的灵活性。