We consider the problem of estimating the difference between two functional undirected graphical models with shared structures. In many applications, data are naturally regarded as a vector of random functions rather than a vector of scalars. For example, electroencephalography (EEG) data are more appropriately treated as functions of time. In such a problem, not only can the number of functions measured per sample be large, but each function is itself an infinite dimensional object, making estimation of model parameters challenging. This is further complicated by the fact that the curves are usually only observed at discrete time points. We first define a functional differential graph that captures the differences between two functional graphical models and formally characterize when the functional differential graph is well defined. We then propose a method, FuDGE, that directly estimates the functional differential graph without first estimating each individual graph. This is particularly beneficial in settings where the individual graphs are dense, but the differential graph is sparse. We show that FuDGE consistently estimates the functional differential graph even in a high-dimensional setting for both fully observed and discretely observed function paths. We illustrate the finite sample properties of our method through simulation studies. We also propose a competing method, the Joint Functional Graphical Lasso, which generalizes the Joint Graphical Lasso to the functional setting. Finally, we apply our method to EEG data to uncover differences in functional brain connectivity between a group of individuals with alcohol use disorder and a control group.


翻译:我们考虑的是估算两个功能性、非方向、有共享结构的图形模型之间的差异问题。在许多应用中,数据自然被视为随机函数的矢量,而不是卡路里矢量。例如,电子脑摄影(EEEG)数据被作为时间函数处理更为恰当。在这样一个问题中,不仅每个样本所测量的功能数量巨大,而且每个函数本身都是无限的维度对象,因此模型参数的估算具有挑战性。由于曲线通常只在离散时间点上观测,这更为复杂。我们首先定义一个功能差异图,以捕捉两个功能性图形模型之间的差异,而在功能差异图定义完善时,则正式定性。我们然后提出一种方法,即FUDGE,直接估算功能差异图,而不首先估算每个单个图形。在单个图形密度高的地方,这不仅能帮助每个样本,而且差异图本身也是稀疏远的。我们显示,即使在完全观察和独立观察的功能性函数路径的设置时,曲线也会进一步复杂。我们通过模拟研究来说明我们方法的有限样本特性特性特性,我们最后用一个功能性的方法来对比。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
123+阅读 · 2021年6月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
已删除
将门创投
8+阅读 · 2019年1月30日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
123+阅读 · 2021年6月4日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
8+阅读 · 2019年1月30日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员