In this paper, we tackle the problem of computing a sequence of rankings with the guarantee of the Pareto-optimal balance between (1) maximizing the utility of the consumers and (2) minimizing unfairness between producers of the items. Such a multi-objective optimization problem is typically solved using a combination of a scalarization method and linear programming on bi-stochastic matrices, representing the distribution of possible rankings of items. However, the above-mentioned approach relies on Birkhoff-von Neumann (BvN) decomposition, of which the computational complexity is $\mathcal{O}(n^5)$ with $n$ being the number of items, making it impractical for large-scale systems. To address this drawback, we introduce a novel approach to the above problem by using the Expohedron - a permutahedron whose points represent all achievable exposures of items. On the Expohedron, we profile the Pareto curve which captures the trade-off between group fairness and user utility by identifying a finite number of Pareto optimal solutions. We further propose an efficient method by relaxing our optimization problem on the Expohedron's circumscribed $n$-sphere, which significantly improve the running time. Moreover, the approximate Pareto curve is asymptotically close to the real Pareto optimal curve as the number of substantial solutions increases. Our methods are applicable with different ranking merits that are non-decreasing functions of item relevance. The effectiveness of our methods are validated through experiments on both synthetic and real-world datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2019年3月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员