In randomized experiments, adjusting for observed features when estimating treatment effects has been proposed as a way to improve asymptotic efficiency. However, only linear regression has been proven to form an estimate of the average treatment effect that is asymptotically no less efficient than the treated-minus-control difference in means regardless of the true data generating process. Randomized treatment assignment provides this "do-no-harm" property, with neither truth of a linear model nor a generative model for the outcomes being required. We present a general calibration method which confers the same no-harm property onto estimators leveraging a broad class of nonlinear models. This recovers the usual regression-adjusted estimator when ordinary least squares is used, and further provides non-inferior treatment effect estimators using methods such as logistic and Poisson regression. The resulting estimators are non-inferior to both the difference in means estimator and to treatment effect estimators that have not undergone calibration. We show that our estimator is asymptotically equivalent to an inverse probability weighted estimator using a logit link with predicted potential outcomes as covariates. In a simulation study, we demonstrate that common nonlinear estimators without our calibration procedure may perform markedly worse than both the calibrated estimator and the unadjusted difference in means.


翻译:在随机的实验中,在估计治疗效果时,建议调整观察到的特征,以此作为提高无线反应效率的一种方法。然而,只有线性回归被证明能够形成平均治疗效果的估计数,这种平均治疗效果的随机性效率不亚于处理-最小控制能力的差异,而不论真正的数据生成过程如何。随机性治疗任务提供了这种“不伤害”属性,既没有线性模型的真伪,也没有要求的结果的基因化模型。我们提出了一个一般校准方法,该方法将相同的无伤害属性授予利用大类非线性模型的估测者。在使用普通最小方时,这恢复了通常的回归-调整估计效果,并且进一步提供了非偏差治疗效果的估测者,使用了后勤和Poisson回归等方法。 由此产生的估测者对于数值的差别,既非直线模型的真伪性,也不适用于没有经过校准的估测结果。 我们的估测师与不偏差性偏差的校准性校准结果相比, 我们的测结果与不具有更差性的校准性的校准结果。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月4日
Distributed Learning with Dependent Samples
Arxiv
0+阅读 · 2021年11月4日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员