We introduce the concurrent shuffle model of differential privacy. In this model we have multiple concurrent shufflers permuting messages from different, possibly overlapping, batches of users. Similarly to the standard (single) shuffle model, the privacy requirement is that the concatenation of all shuffled messages should be differentially private. We study the private continual summation problem (a.k.a. the counter problem) and show that the concurrent shuffle model allows for significantly improved error compared to a standard (single) shuffle model. Specifically, we give a summation algorithm with error $\tilde{O}(n^{1/(2k+1)})$ with $k$ concurrent shufflers on a sequence of length $n$. Furthermore, we prove that this bound is tight for any $k$, even if the algorithm can choose the sizes of the batches adaptively. For $k=\log n$ shufflers, the resulting error is polylogarithmic, much better than $\tilde{\Theta}(n^{1/3})$ which we show is the smallest possible with a single shuffler. We use our online summation algorithm to get algorithms with improved regret bounds for the contextual linear bandit problem. In particular we get optimal $\tilde{O}(\sqrt{n})$ regret with $k= \tilde{\Omega}(\log n)$ concurrent shufflers.
翻译:我们引入了差异隐私的并行打字模式。 在这个模式中, 我们拥有来自不同、 可能重叠的用户批量的多个同时打字机 。 与标准( 单) 打字模式相似, 隐私要求是所有打字信件的混结应该有不同的隐私。 我们研究私人连续打字问题( a. k. a. a. offlegal), 并显示同时打字模式允许与标准( 单) 打字模式相比有显著改进的错误 。 具体地说, 我们给出了一个包含 $\ tilde{ O} (n\ (2k+1}) 和美元同时打字的拼字算算法。 此外, 我们证明, 即使算法可以以适应性的方式选择批量的大小, 并显示一个比 $\ tilde} (n_ 1} (n\ k+1}} 美元) 和 $ kuilflerg 的拼算算算法也比 $( 我们使用一个最小的硬度) road 。