Neural networks drive the success of natural language processing. A fundamental property of natural languages is their compositional structure, allowing us to describe new meanings systematically. However, neural networks notoriously struggle with systematic generalization and do not necessarily benefit from a compositional structure in emergent communication simulations. Here, we test how neural networks compare to humans in learning and generalizing a new language. We do this by closely replicating an artificial language learning study (conducted originally with human participants) and evaluating the memorization and generalization capabilities of deep neural networks with respect to the degree of structure in the input language. Our results show striking similarities between humans and deep neural networks: More structured linguistic input leads to more systematic generalization and better convergence between humans and neural network agents and between different neural agents. We then replicate this structure bias found in humans and our recurrent neural networks with a Transformer-based large language model (GPT-3), showing a similar benefit for structured linguistic input regarding generalization systematicity and memorization errors. These findings show that the underlying structure of languages is crucial for systematic generalization. Due to the correlation between community size and linguistic structure in natural languages, our findings underscore the challenge of automated processing of low-resource languages. Nevertheless, the similarity between humans and machines opens new avenues for language evolution research.
翻译:自然语言的基本特性是其构成结构,让我们能够系统地描述新的含义。然而,神经网络臭名昭著地以系统化的泛泛化方式挣扎,而且不一定在突发的通信模拟中受益于构成结构。在这里,我们测试神经网络如何在学习和普及新语言方面与人类进行比较。我们这样做的方法是,密切复制人工语言学习研究(最初与人类参与者一起进行),并评价深层神经网络在投入语言结构程度方面的记忆和概括能力。我们的结果显示,人类和深层神经网络之间有着惊人的相似性:结构化的语言投入导致人类和神经网络代理人之间以及不同的神经动力之间更加系统化的概括化和更好的融合。然后,我们复制在人类和我们经常的神经网络中发现的这种结构偏差,采用基于变异器的大型语言模型(GPT-3),显示在一般化系统化和记忆错误方面结构化的语言投入的类似好处。这些结果显示,语言的基本结构对于系统化的普及和深层神经网络是十分关键的:结构化的语言输入:更结构的语言输入导致更系统化的人类和神经网络代理和神经系统化网络动力结构之间以及各种语言结构的变异化研究。但是,也强调了我们的语言结构的自然结构的变异化结构的变化结构,因此,因此,在人类语言结构和语言结构的变异变化结构的变化结构的变异化结构的变。