In this paper, we introduce a class of learning dynamics for general quantum games, that we call "follow the quantum regularized leader" (FTQL), in reference to the classical "follow the regularized leader" (FTRL) template for learning in finite games. We show that the induced quantum state dynamics decompose into (i) a classical, commutative component which governs the dynamics of the system's eigenvalues in a way analogous to the evolution of mixed strategies under FTRL; and (ii) a non-commutative component for the system's eigenvectors which has no classical counterpart. Despite the complications that this non-classical component entails, we find that the FTQL dynamics incur no more than constant regret in all quantum games. Moreover, adjusting classical notions of stability to account for the nonlinear geometry of the state space of quantum games, we show that only pure quantum equilibria can be stable and attracting under FTQL while, as a partial converse, pure equilibria that satisfy a certain "variational stability" condition are always attracting. Finally, we show that the FTQL dynamics are Poincar\'e recurrent in quantum min-max games, extending in this way a very recent result for the quantum replicator dynamics.
翻译:在本文中,我们为普通量子游戏引入了一组学习动态, 我们称之为“ 遵循量子正规化领导者 ” ( FTQL), 参照传统“ 跟随正规化领导者” (FTRL) 模板, 用于在有限游戏中学习。 我们显示, 诱发的量子状态动态分解成 (i) 一种经典的、 通俗的元素, 以类似于FTRL 下混合战略演变的方式调节系统元值的动态; 以及 (ii) 一个“ 遵循量子正规化领导者 ” ( FTQL) 的非混合元素。 尽管这个非经典的元素包含复杂因素, 我们发现, 在所有量子游戏中, FTQL 的动态并不比常年的遗憾多。 此外, 调整典型的稳定性概念, 以考虑到量子游戏状态的非线性地理测量, 我们显示, 在FTQL下, 只有纯量子平衡才能保持稳定和吸引; 同时, 作为部分反等离子平衡, 满足某种“ 变异性稳定” 状态。 最后, 我们展示了这种常态的硬质的硬质的硬质游戏, 驱动 。