Gaussian Process (GP) models are a class of flexible non-parametric models that have rich representational power. By using a Gaussian process with additive structure, complex responses can be modelled whilst retaining interpretability. Previous work showed that additive Gaussian process models require high-dimensional interaction terms. We propose the orthogonal additive kernel (OAK), which imposes an orthogonality constraint on the additive functions, enabling an identifiable, low-dimensional representation of the functional relationship. We connect the OAK kernel to functional ANOVA decomposition, and show improved convergence rates for sparse computation methods. With only a small number of additive low-dimensional terms, we demonstrate the OAK model achieves similar or better predictive performance compared to black-box models, while retaining interpretability.
翻译:高斯进程模型(GP)是具有丰富代表性的灵活非参数模型。通过使用带有添加结构的高斯进程,可以在保留可解释性的同时模拟复杂的反应。先前的工作显示,加聚高斯进程模型需要高维互动术语。我们提议对添加功能施加正方形限制的正方形添加内核(OAK),使功能关系具有可识别的、低维的表示力。我们把OAK内核与功能的ANOVA分解连接起来,并显示稀散计算方法的更好趋同率。只有少量的添加低维度术语,我们证明OAK模型在保留可解释性的同时,取得了与黑箱模型相似或更好的预测性能。