An l0-regularized linear regression for a sparse signal reconstruction is implemented based on the quadratic unconstrained binary optimization (QUBO) formulation. In this method, the signal values are quantized and expressed as bit sequences. By transforming l0-norm to a quadratic form of these bits, the fully quadratic objective function is provided and optimized by the solver specialized for QUBO, such as the quantum annealer. Numerical experiments with a commercial quantum annealer show that the proposed method performs slightly better than conventional methods based on orthogonal matching pursuit (OMP) and the least absolute shrinkage and selection operator (LASSO) under several limited conditions.
翻译:为稀有信号重建而实施的l0正规化线性回归基于四边形不受限制的二进制优化(QUBO)配方。在这个方法中,信号值被量化,以位数序列表示。通过将这些位数位数的弧度转换为四边形形式,四边形目标功能由量子射线器等QUBO专用求解器提供并优化。使用商业量子annealer的数值实验显示,在几个有限条件下,拟议方法比基于正方形匹配追求(OMP)和最小绝对缩缩和选择操作器(LASSO)的常规方法略优。