Nasopharyngeal Carcinoma (NPC) is a leading form of Head-and-Neck (HAN) cancer in the Arctic, China, Southeast Asia, and the Middle East/North Africa. Accurate segmentation of Organs-at-Risk (OAR) from Computed Tomography (CT) images with uncertainty information is critical for effective planning of radiation therapy for NPC treatment. Despite the stateof-the-art performance achieved by Convolutional Neural Networks (CNNs) for automatic segmentation of OARs, existing methods do not provide uncertainty estimation of the segmentation results for treatment planning, and their accuracy is still limited by several factors, including the low contrast of soft tissues in CT, highly imbalanced sizes of OARs and large inter-slice spacing. To address these problems, we propose a novel framework for accurate OAR segmentation with reliable uncertainty estimation. First, we propose a Segmental Linear Function (SLF) to transform the intensity of CT images to make multiple organs more distinguishable than existing methods based on a simple window width/level that often gives a better visibility of one organ while hiding the others. Second, to deal with the large inter-slice spacing, we introduce a novel 2.5D network (named as 3D-SepNet) specially designed for dealing with clinic HAN CT scans with anisotropic spacing. Thirdly, existing hardness-aware loss function often deal with class-level hardness, but our proposed attention to hard voxels (ATH) uses a voxel-level hardness strategy, which is more suitable to dealing with some hard regions despite that its corresponding class may be easy. Our code is now available at https://github.com/HiLab-git/SepNet.


翻译:Nasoparyngeal Carcinoma (NPC) 是北极、中国、东南亚和中东/北非地区头部和内克(HAN)癌症的一种主要形式。 光学成像的精确分解( OAR) 与不确切的信息对有效规划NPC治疗的辐射疗法至关重要。 尽管进化神经网络在OARs自动分解方面取得了最先进的性能, 现有的方法并不提供治疗规划分解结果的不确定性估计, 并且其准确性仍然受到若干因素的限制, 包括CT软组织对比低、OARs高度偏差和大截肢间间隔。 为了解决这些问题, 我们提出了一个具有可靠不确定性估计的准确的 OAR分解新框架。 首先, 我们提议了一个分流线函数( SLF) 来改变CT 图像的强度, 使多种器官比基于简单窗口的分级/ 水平的现有方法更能区分, 但是它们的分解率往往有限, CT/ 他们的准确性关系仍然受若干因素的限制, CT CT CT 包括CT CT 软组织之间的对比, 高度高度高度高度高度和 IMS 网络进行更清晰的分解 。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
50+阅读 · 2020年12月14日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
Top
微信扫码咨询专知VIP会员