项目名称: 基于基本形状体及其拓扑结构的点云场景物体识别方法研究

项目编号: No.61272284

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 王映辉

作者单位: 西安理工大学

项目金额: 79万元

中文摘要: 点云对复杂场景和物体的"外形"具有强大的表达能力,但点云识别问题严重妨碍了它在机器人导航、机器视觉等领域的推广及应用。该课题以识别为目标,探讨和研究点云场景中物体对象识别的方法与体系。为此,我们以几何学中的基本几何形状体为依据,以空间拓扑学中的拓扑结构为导引,以高斯映射和空间数据结构为手段,拟建立基于基本形状体的物体对象组合构建机制,形成有效的组合对象库,为点云场景物体对象的迭代形成和匹配提供支撑;获得点云场景中基本形状体及其之间的拓扑结构关系,形成场景分解的有效方法体系;探索以组合对象库为参照依据的场景物体对象迭代组合策略,形成场景物体对象组合与验证方法,进而实现场景中物体对象的有效识别,同时探索解决分割中常见的过分割和欠分割这一关键问题。最后形成原型软件系统。该课题的核心目的是发展三维识别的基础理论与技术,实现数字几何与模式识别的融合,推动离散点集的广泛应用。

中文关键词: 点云数据;过分割;物体提取;场景识别;场景重建

英文摘要: The point cloud has a strong expression ability of the complex scenes and object shape. However, the recognition of the scattered data points seriously hinders the application in robot navigation and machine vision. In this research, we propose a systematic method of the object recognition in point cloud scene. Firstly, taking the space topology for guidance, we construct the mechanism of object combination using Gauss mapping and spatial data structure and then an effective object combination library is established which provides support for the iterative formation and matching of object in the point cloud scene. Secondly, the topologic relations between the basic shapes are extracted to form an effective methodology for scene decomposition. Then, the iterative combination strategies of object are explored based on the object combination library and the combination and verification methods of object are also formed so as to realize the objects recognition in the scene. We also discuss and solve the problem of over-segmentation and under-segmentation in this work. Finally, a prototype software system is formed. The core purpose of the research is to develop the basic theories and techniques of 3D object recognition, realize the integration of digital geometry and pattern recognition, and further promote the wide

英文关键词: Point cloud;Over-segmentation;Object extraction;Scene recognition;Scene reconstruction

成为VIP会员查看完整内容
0

相关内容

场景图生成:一个全面综述
专知会员服务
64+阅读 · 2022年1月4日
专知会员服务
212+阅读 · 2021年8月2日
专知会员服务
26+阅读 · 2021年3月5日
专知会员服务
69+阅读 · 2021年1月16日
专知会员服务
43+阅读 · 2020年12月8日
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
最新《自然场景中文本检测与识别》综述论文,26页pdf
专知会员服务
69+阅读 · 2020年6月10日
【CVPR2020】图神经网络中的几何原理连接
专知会员服务
56+阅读 · 2020年4月8日
「基于GNN的图分类研究」最新2022综述
图与推荐
7+阅读 · 2022年2月14日
ECCV2020 | SMAP: 单步多人绝对三维姿态估计
学术头条
10+阅读 · 2020年8月9日
【泡泡点云时空】基于分割方法的物体六维姿态估计
泡泡机器人SLAM
18+阅读 · 2019年9月15日
ICCV2019 | 高精度,高效率点云三维重建 PointMVSNet
计算机视觉life
23+阅读 · 2019年9月5日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
10+阅读 · 2020年6月12日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
12+阅读 · 2018年1月28日
小贴士
相关VIP内容
场景图生成:一个全面综述
专知会员服务
64+阅读 · 2022年1月4日
专知会员服务
212+阅读 · 2021年8月2日
专知会员服务
26+阅读 · 2021年3月5日
专知会员服务
69+阅读 · 2021年1月16日
专知会员服务
43+阅读 · 2020年12月8日
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
最新《自然场景中文本检测与识别》综述论文,26页pdf
专知会员服务
69+阅读 · 2020年6月10日
【CVPR2020】图神经网络中的几何原理连接
专知会员服务
56+阅读 · 2020年4月8日
相关资讯
「基于GNN的图分类研究」最新2022综述
图与推荐
7+阅读 · 2022年2月14日
ECCV2020 | SMAP: 单步多人绝对三维姿态估计
学术头条
10+阅读 · 2020年8月9日
【泡泡点云时空】基于分割方法的物体六维姿态估计
泡泡机器人SLAM
18+阅读 · 2019年9月15日
ICCV2019 | 高精度,高效率点云三维重建 PointMVSNet
计算机视觉life
23+阅读 · 2019年9月5日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
微信扫码咨询专知VIP会员